GPU Benchmarking
Last updated
Last updated
Within the PoA's health check, the drill test incorporates sophisticated benchmarking techniques such as MLPerf to evaluate machine performance comprehensively. By conducting benchmarking assessments, including MLPerf, the algorithm quantifies the machine's efficiency. This quantitative measure serves as a reliable indicator of the machine's condition, ensuring robustness and reliability in its operational capabilities.
Here are some sample results of the drill test on Nvidia A100:
MLPerf Results Summary:
SUT name : BERT SERVER
Scenario : Offline
Mode : PerformanceOnly
Samples per second: 1532.17
Result is : VALID
Min duration satisfied : Yes
Min queries satisfied : Yes
Early stopping satisfied: Yes
Additional Stats:
Min latency (ns) : 3559383281
Max latency (ns) : 1292280950807
Mean latency (ns) : 788846755872
50.00 percentile latency (ns) : 840201049914
90.00 percentile latency (ns) : 1234598190171
95.00 percentile latency (ns) : 1268998116410
97.00 percentile latency (ns) : 1280065956777
99.00 percentile latency (ns) : 1289280826440
99.90 percentile latency (ns) : 1292043266934
Test Parameters Used:
samples_per_query : 1980000
target_qps : 3000
target_latency (ns): 0
max_async_queries : 1
min_duration (ms): 600000
max_duration (ms): 0
min_query_count : 1
max_query_count : 0
qsl_rng_seed : 13281865557512327830
sample_index_rng_seed : 198141574272810017
schedule_rng_seed : 7575108116881280410
accuracy_log_rng_seed : 0
accuracy_log_probability : 0
accuracy_log_sampling_target : 0
print_timestamps : 0
performance_issue_unique : 0
performance_issue_same : 0
performance_issue_same_index : 0
performance_sample_count : 10833